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Hemorrhage in trauma is a
significant challenge, ac-
counting for 30% to 40% of
all fatalities, second only to

central nervous system injury as a cause of
death (1–3). However, hemorrhagic death
is the leading preventable cause of mortal-
ity in combat casualties (4–6) and typically
occurs within 6 to 24 hrs of injury (7–11).
In cases of severe hemorrhage, massive
transfusion (MT) may be required to re-
place more than the entire blood volume.
Early prediction of massive transfusion re-
quirements, using clinical and laboratory

parameters (12–14) combined with aggres-
sive management of hemorrhage by surgi-
cal and nonsurgical means, has significant
potential to reduce early mortality. Al-
though the classification of massive trans-
fusion varies (15–17), the most frequently
used definition is ten or more units of
blood in 24 hrs (18, 19) Transfusion of red
blood cells is intended to restore blood vol-
ume, tissue perfusion, and oxygen-carrying
capacity; platelets, plasma, and cryoprecip-
itate are intended to facilitate hemostasis
through prevention or treatment of coagu-
lopathy. Massive transfusion is uncommon
in civilian trauma, occurring in only 1% to
3% of trauma admissions (10, 20, 21). As a
result of a higher proportion of penetrating
injury in combat casualties, it has occurred
in approximately 8% of Operation Iraqi
Freedom admissions and in as many as
16% during the Vietnam conflict (22, 23).
Despite its potential to reduce early mor-
tality, massive transfusion is not without
risk. It requires extensive blood-banking re-
sources (24–26) and is associated with high
mortality (17, 21, 27). This review describes
the clinical problems associated with mas-
sive transfusion and surveys the nonsurgi-
cal management of hemorrhage, including
transfusion of blood products, use of hemo-
static bandages/agents, and treatment with
hemostatic medications.

Complications of Massive
Transfusion

There are numerous problems associ-
ated with MT, including infectious, im-
munologic, and physiological complica-
tions related to the collection, testing,
preservation, and storage of blood prod-
ucts (Table 1). These complications can
exacerbate the underlying pathophysiol-
ogy of injury and the number of transfu-
sions required independently predicts for
mortality (20, 28, 29). Trauma patients
requiring transfusion generally receive
uncrossmatched type O blood until type-
specific products are available. The im-
mediate safety of uncrossmatched type O
blood use in trauma is well established
with no acute hemolytic reactions re-
ported (30 –32). Although type-specific
uncrossmatched blood has also been used
successfully for MT (33, 34), acute hemo-
lytic reactions have been associated with
such blood products (35). Patients who
have been transfused large volumes of
type O stored “whole blood” (thus con-
taining type O plasma) have been known
to subsequently develop acute hemolytic
reactions to type-specific blood, presum-
ably from transfused isoagglutinins
against type A or B antigens (36). Delayed
serologic conversion and hemolytic reac-
tions against blood alloantigens are also
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Background: Hemorrhage in trauma is a significant challenge,
accounting for 30% to 40% of all fatalities, second only to central
nervous system injury as a cause of death. However, hemorrhagic
death is the leading preventable cause of mortality in combat
casualties and typically occurs within 6 to 24 hrs of injury. In
cases of severe hemorrhage, massive transfusion may be re-
quired to replace more than the entire blood volume. Early pre-
diction of massive transfusion requirements, using clinical and
laboratory parameters, combined with aggressive management of
hemorrhage by surgical and nonsurgical means, has significant
potential to reduce early mortality.

Discussion: Although the classification of massive transfusion
varies, the most frequently used definition is ten or more units of
blood in 24 hrs. Transfusion of red blood cells is intended to
restore blood volume, tissue perfusion, and oxygen-carrying ca-
pacity; platelets, plasma, and cryoprecipitate are intended to

facilitate hemostasis through prevention or treatment of coagu-
lopathy. Massive transfusion is uncommon in civilian trauma,
occurring in only 1% to 3% of trauma admissions. As a result of
a higher proportion of penetrating injury in combat casualties, it
has occurred in approximately 8% of Operation Iraqi Freedom
admissions and in as many as 16% during the Vietnam conflict.
Despite its potential to reduce early mortality, massive transfu-
sion is not without risk. It requires extensive blood-banking
resources and is associated with high mortality.

Summary: This review describes the clinical problems associ-
ated with massive transfusion and surveys the nonsurgical man-
agement of hemorrhage, including transfusion of blood products,
use of hemostatic bandages/agents, and treatment with hemo-
static medications. (Crit Care Med 2008; 36:[Suppl.]:S325-S339)
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known to develop, but at a lower rate
perhaps as a result of the relative immu-
nosuppression seen in trauma patients
after injury (24, 37–39).

Immune-related consequences of MT
appear similar to those associated with
blood transfusion in general and include
microchimerism (40) and transfusion-
related immunomodulation (41). Micro-
chimerism is the stable persistence of a
minor population of allogeneic cells and
can be detected for years after transfu-
sion. It can occur in up to 10% of trans-
fused trauma patients, although its con-
sequences remain uncertain (40, 42).
Transfusion-related immunomodulation,
however, has been associated with in-
creased risk of infection (43–47), acute
lung injury/acute respiratory distress
syndrome (48–51), systemic inflamma-
tory response syndrome (28), and multi-
ple organ failure (52, 53). The precise
mechanisms for the development of these
complications are unclear, although the
age of stored blood, red blood cell micro-
particles, foreign antigens, foreign white
blood cells, and bioreactive lipids with
neutrophil priming have all been impli-
cated (41, 54–56).

Hyperkalemia is a common complica-
tion of MT. Increased levels of extracellu-
lar potassium develop during the storage
of red blood cells with concentrations av-
eraging 12 mEq/L at 7 days and increas-
ing to 32 mEq/L after 21 days of storage
(57). This excess extracellular potassium
is gradually taken back into red blood
cells (RBCs) after transfusion with resto-
ration of normal metabolic activity (58).
During massive transfusion, however,
blood administered rapidly through cen-
tral lines without sufficient time or mix-

ture to prevent this extracellular potas-
sium from reaching the right heart can
result in ventricular arrhythmia and car-
diac standstill (59). The use of washed red
cells is an impractical solution because
this process is time-consuming (taking
approximately 20 –30 mins with auto-
mated processes). As a result of removal
of the anticoagulant-preservative solu-
tion, washing also decreases the shelf-life
of blood (units must be used within 24
hrs) and increases the risk of bacterial
contamination (60). One may be able to
limit the effects of hyperkalemia by
transfusing blood from lines further
away from the right atrium to permit
greater mixture of blood before arrival
to the heart. Fresher blood may also be
requested from the blood bank or may
be considered as an institutional policy
for massively transfused patients. Once
hyperkalemia develops, its management
is similar to that for other clinical con-
ditions (Table 2).

Hypocalcemia occurs in MT as a result
of the presence of citrate as an anticoag-

ulant in blood products (61). Citrate ex-
erts its anticoagulant action through the
binding of ionized calcium and hypocal-
cemia is most prominent with the trans-
fusion of plasma and platelets, which
have high citrate concentrations. Citrate
undergoes rapid hepatic metabolism, and
hypocalcemia is generally transient dur-
ing standard transfusion (62, 63). Al-
though routine administration of cal-
cium is not always indicated in MT (64),
it must be recognized that citrate metab-
olism may be dramatically impaired by
hypoperfusion states (65), hypothermia
(66), and in patients with liver disease
(67). Such patients can manifest signs of
citrate toxicity with tetany, prolonged QT
interval on electrocardiogram, decreased
myocardial contractility, hypotension,
narrowed pulse pressure, elevated end-
diastolic left ventricular pressures, and
elevated central venous pressures (68).
Hypocalcemia can also increase the sus-
ceptibility to arrhythmia from coexisting
hyperkalemia (69). Hypocalcemia has
been suggested as a cause of coagulopa-
thy (70), but it generally manifests at
calcium levels below those at which car-
diac standstill occurs (71). Hypocalcemia
can be managed by slowing the rate of
transfusion of plasma-containing com-
ponents, but this is often not a practical
option in trauma. If hypocalcemia is
anticipated based on the clinical fea-
tures, electrocardiographic changes, or
ionized calcium levels, it may be man-
aged with intravenous calcium chloride
(Table 2) (72).

There are additional storage-related
effects of blood products that may pro-
duce physiological and possibly clinical
consequences (73, 74). Included among
these defects is decreased deformability of
RBCs, a trait that allows the red cell (8
�m) to navigate through the microvascu-
lature and deliver oxygen to tissues with
significantly smaller capillary lumens
(3–8 �m) (75). Red blood cell deform-
ability decreases with storage and is re-
lated to decreased surface area–volume
ratio, decreased membrane elasticity, and
increased intracellular viscosity (76). Ox-
ygen delivery to tissues may be further
impaired by changes in the hemoglobin
oxygen-binding affinity as a result of de-
creases in 2,3-diphosphoglycerate in
stored RBCs (77). The consequences of
this are unknown in trauma because di-
minished 2,3-diphosphoglycerate may be
balanced by coexisting acidosis, which
promotes unloading of oxygen in the tis-
sues (23). Finally, impaired vasodilation

Table 1. Complications of transfusion

Acute
Acute hemolytic transfusion reaction
Febrile non-hemolytic transfusion reactions
Transfusion-related acute lung injury
Allergic reactions
Bacterial sepsis
Hypocalcemiaa

Hyperkalemiaa

Acidosisa

Hypothermiaa

Dilutional coagulopathya

Delayed
Delayed hemolytic transfusion reactions
Transfusion-related immmunomodulation
Microchimerism
Transfusion-transmitted diseases
Post-transfusion graft-versus-host disease
Post-transfusion purpura

aMore specific to massive transfusion

Table 2. Management/prevention of non-hemato-
logic complications of massive transfusion

Hypothermia
Prehospital active/resistive warming with hot

packs/heating blankets �345, 346�
High-capacity fluid warmers �132, 347�
Warmed trauma suites/operating rooms �348�
Forced air warming blankets �349�
Drapes/blankets
Warmed/humidified oxygen �350, 351�
Limit surgical exposure (e.g., damage control

techniques) �352, 353�
Peritoneal or pleural lavage
Extracorporeal or endovascular warming

devices �354–356�
Acidosis

Restoration of adequate tissue perfusion
�103, 117�

Transfuse plasma �357�
Sodium bicarbonate or tris-hydroxymethyl

aminomethane �358�
Hyperkalemia

Transfuse fresher blood (�14 days)
Transfuse blood from lines further away from

the right atrium
Calcium chloride to stabilize the

myocardium �359�
Shift extracellular potassium into the

intracellular space
Correction of acidemia/Alkalinizing solutions

�360�
Regular insulin with dextrose �361�
Inhaled beta-agonists �362�

Hypocalcemia
Calcium chloride based on measurement of

serum ionized calcium levels
Slower infusion of citrate-containing plasma

components
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in response to tissue hypoxia can develop
as a result of decreased vasoactive nitric
oxide concentrations, which are known
to decline rapidly in banked blood (78,
79). It is possible that altered oxygen de-
livery by stored red blood cells may have
adverse clinical consequences in patients
with limited cardiopulmonary reserve, al-
though this hypothesis has not been
tested in rigorous clinical trials.

Coagulopathy in Massive
Transfusion

Hemostasis is a complex process that
requires the balanced interaction of the
endothelium, platelets, coagulation fac-
tors, physiological anticoagulants, and fi-
brinolytic proteins (80, 81). The manage-
ment of coagulopathy in massively
transfused patients is often complicated
by multiple simultaneous defects in the
hemostatic pathway (Table 3) (26). Co-
agulopathy may be clinically recognized
as abnormal “microvascular” bleeding of
uninjured mucosal or serosal surfaces or
by prolonged bleeding at sites of vascular
access and wound tissue surfaces after
control of vascular bleeding (82). Stan-
dard clinical laboratory tests have poor
correlation with in vivo coagulopathy

(83). Laboratory values most frequently
abnormal in the setting of coagulopathy
are the prothrombin time (PT) (97%),
platelet count (72%), and the activated
partial thromboplastin time (aPTT)
(70%) (84). Thromboelastography is a
method of measuring whole blood coag-
ulation status from primary hemostasis
to fibrinolysis, including plasma–platelet
interactions. This technique has been
proposed as a more accurate measure of
coagulopathy and predictor of transfu-
sion requirements than standard coagu-
lation tests (85–87).

Coagulopathy is frequently present on
admission in severely injured patients,
particularly those with brain and/or pen-
etrating injuries. When such coagulopa-
thy is present, it is correlated with the
need for MT as well as increased mortality
(13, 27, 88–91). Coagulopathy leads to
further hemorrhage and worsening phys-
iological derangements, in turn prompt-
ing additional fluid resuscitation and
transfusion. Such resuscitation contrib-
utes to more profound coagulopathy and
thus leads to the “bloody vicious cycle”
(92). The combination of severe injury,
shock, acidosis, and hypothermia predict-
ably leads to coagulopathic bleeding (93).
Although multiple defects must be
treated simultaneously, it is helpful to
examine each of these components indi-
vidually.

Acidosis. Acidosis, largely as a result of
lactate production by hypoperfused tis-
sues undergoing anaerobic metabolism
(94). can develop during hemorrhagic
shock (95, 96) and can be exacerbated by
massive transfusion and crystalloid resus-
citation. Stored RBCs are acidic with pH
of 7.16 at time of collection. Stored RBCs
become progressively more acidic during
storage as a result of cellular metabolism
with a pH of 6.87 at 21 days and 6.73 at 35
days (97). This acid is usually rapidly me-
tabolized by the liver after transfusion
(98), but metabolism may be impaired
during shock (99) or overwhelmed dur-
ing extremely rapid replacement of blood
volume (like with 50% of the blood vol-
ume in 10 mins) (100). Nonbuffered crys-
talloids can contribute to acidemia as a
result of supraphysiological levels of
chloride relative to sodium resulting in
dissociation of H� from H2O (101). Man-
ifestations of acidemia include dysrhyth-
mia, diminished cardiac contractility, hy-
potension, and decreased responsiveness
to catecholamines.

In addition to such effects, acidosis
may both exacerbate (102–105) and serve

as an independent predictor for coagu-
lopathy (93). Clotting factors are en-
zymes whose activity is impaired by aci-
demia; for example, a decrease of pH from
7.4 to 7.0 reduces the activity of factor
VIIa by more than 90%, factor VIIa/tissue
factor complex by 55% and the factor
Xa/factor Va (prothrombinase) complex
by 70% (106). Thrombin generation, the
primary “engine” of hemostasis, is thus
profoundly inhibited by acidosis (107).
The effect of acidosis on coagulation has
been measured by thromboelastography,
which reveals progressive impairments
up to 168% of control levels in the rate of
clot formation and polymerization with a
decrease in pH from 7.4 to 6.8 (108).
Clinically, trauma patients with an in-
creased base deficit on admission tend to
have prolongations of PT and aPTT (109).
There is also evidence of natural antico-
agulant activation in shock and acidosis
through the protein C pathway; throm-
bomodulin, which enhances the activa-
tion of protein C by thrombin (110), is
increased in hemorrhagic shock (109).
Activated protein C, in turn, serves to
inactivate coagulation factors Va and
VIIIa, thus reducing thrombin genera-
tion. Platelet aggregation is also impaired
by acidosis (111, 112), attributable in part
to decreased store-operated Ca2� entry
into platelets (113). Finally, there is en-
hanced fibrinolysis in shock and acidosis
(114) with accelerated production of plas-
min as a result of increases in tissue plas-
minogen activator release by thrombin as
well as depletion of plasminogen-activator
inhibitor-1 by activated protein C (109).

The reversal of acidosis with alkaliniz-
ing solutions has not been shown to re-
verse coagulopathy in animal studies
(115, 116), although such adjuncts are
often provided as necessary to achieve an
arterial blood gas pH �7.2 (Table 2).
These data highlight the fact that resto-
ration of adequate tissue perfusion is par-
amount to reverse the underlying lactic
acidosis (103, 117).

Hypothermia. Trauma patients de-
velop hypothermia from conductive, con-
vective, evaporative, and radiative losses
as a result of environmental and surgical
exposure. In addition, temperature regu-
lation is impaired during shock and an-
esthesia (118, 119). Hypothermia, defined
as a core body temperature between 34°C
and 36°C (mild), between 32°C and 34°C
(moderate), and less than 32°C (severe)
(120) is associated with an increased risk
of uncontrolled bleeding and mortality in
trauma patients (121–126). Although an-

Table 3. Factors contributing to the coagulopa-
thy of trauma

Acidemia
Decreased coagulation factor activity
Decreased thrombin generation
Activation of physiologic anticoagulation via

protein C pathway
Impaired platelet aggregation
Enhanced fibrinolysis via increased tPA and

depletion of plasma activator inhibitor-1
Hypothermia

Platelet dysfunction
Reduced platelet activation by the von

Willebrand factor and platelet
glycoprotein Ib-IX-V complex

Derangements of platelet adhesion and
aggregation

Decreased thrombin generation on platelets
Reduced coagulation factor activity

Dilutional coagulopathy
Fibrinogen/coagulation factor deficiency
Thrombocytopenia
Anemia

Consumption of platelets and
fibrinogen/coagulation factors

Dysregulation of intravascular coagulation
Consumption of antithrombin III
Acquired platelet dysfunction
Increased fibrinolysis
Increased tPA
Decreased �2 antiplasmin

tPA, tissue plasminogen activator.
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imal studies have suggested that con-
trolled hypothermia in hemorrhage may
improve survival (127–129), hypothermia
was associated with increased mortality
in one randomized, clinical trial (130).

Because blood is stored at 4°C, hypo-
thermia can quickly progress during MT
(131). Fluid warmers are absolutely es-
sential for preventing or limiting hypo-
thermia (132). The multiple physiological
consequences of hypothermia include
impaired oxygen delivery by hemoglobin
through leftward shift of the oxyhemo-
globin dissociation curve (133), de-
creased cardiac output (134), increased
risk of cardiac dysrhythmias, increased
cardiac toxicity from electrolyte distur-
bances, and coagulopathy (135, 136).

Platelet dysfunction resulting from
hypothermia was recognized in the 1980s
(137) and also occurs through multiple
mechanisms. Thromboxane A2 produc-
tion, a measure of platelet activation by
the von Willebrand factor and platelet
glycoprotein Ib-IX-V complex, is greatly
reduced at lower temperatures with a
profound reduction in platelet activation
at 30°C (138). Furthermore, defects in
platelet adhesion, platelet aggregation,
and thrombin generation on platelets
have been observed at 33°C (139, 140).
Multiple other hypothermia-induced
platelet function defects have been docu-
mented, including decreased numbers of
platelet alpha granules, up-regulation of
platelet alpha-granule membrane pro-
tein, down-regulation of the GPIb-IX
complex, and prolonged bleeding times
(141, 142).

Hypothermia has a more modest effect
on the coagulation cascade (143–147).
There is a 10% reduction in coagulation
factor activity for each 1°C drop in tem-
perature (126), which prolongs clotting
times at temperatures below 33°C (139).
However, clinicians may underestimate
the effect hypothermia on coagulation
factor activity in vivo because PT and
aPTT assays are performed at 37°C (148,
149). Finally, evidence of increased fibri-
nolysis has been described in the setting
of profound hypothermia (143, 150), al-
though this is most likely the result of
diffuse intravascular coagulation from
circulatory collapse (126, 151).

Platelet dysfunction and impaired co-
agulation enzyme activity are reversible
with normalization of temperature to
37°C, highlighting the need to prevent
and treat hypothermia aggressively (152).
Currently, the goal during resuscitation
is normalization of body temperature

(153), and measures to prevent or reverse
hypothermia are listed in Table 2.

Consumption/Intravascular Coagula-
tion. Consumption of factors with the
hemorrhagic phenotype of diffuse intra-
vascular coagulation has been noted in
early trauma (154, 155), particularly in
association with extensive endothelial in-
jury, massive soft tissue damage, fat em-
bolization from long bone fractures, and
brain injury (156, 157). Although local
coagulation at the site of injury occurs
through exposure of tissue factor and ac-
tivation of factor VII, systemic activation
of coagulation can result from release of
thromboplastin into the circulation or
widespread damage to the endothelium.
This systemic activation of coagulation
may also trigger the immune system in
patterns similar to those seen in septic
patients (158). In addition to consump-
tion of clotting factors, there is dysregu-
lation of coagulation through consump-
tion of antithrombin III (159), acquired
platelet defects (160–162), and increased
fibrinolysis (163) from increased tissue
plasminogen activator (164) and de-
creased �2 antiplasmin (165).

Dilutional Coagulopathy. Dilutional
coagulopathy develops in MT as a conse-
quence of the replacement of shed whole
blood with factor and platelet-poor fluids
like crystalloids, colloids, and stored
blood red blood cells (166). Coagulation
factors are further diluted early in trauma
by fluid shift from the extracellular to the
vascular space, which is proportional to
the grade of shock (167). The major eti-
ologies of dilutional hemostatic defects
associated with MT have varied over the
decades as a result of significant changes
in blood-banking practice. Transfusion
support has shifted from the use of stored
whole blood to the present-day use of
fractionated component therapy. Each
blood product contains different compo-
nents, some of which may be functional
(that is, platelets in fresh whole blood)
but absent or nonfunctional in other
blood products (that is, platelets in
packed red blood cells or in whole blood
stored �24–72 hrs). Strategies for man-
aging the massively transfused patient
must be adjusted to account for the con-
temporary changes in transfusion prac-
tice (168, 169).

The first report of a bleeding diathesis
after MT of banked blood was in 1954,
noting thrombocytopenia and bleeding,
which was responsive to administration
of platelet concentrates (170). Bleeding
tendencies were documented in relation

to the volume and rate of blood infusion,
occurring commonly (33% to 78%) in
adult patients receiving ten or more units
of stored whole blood (171, 172). Based
on reports in combat casualties during
the Korean conflict, platelet dysfunction
and deficiencies of labile coagulation fac-
tors (V and VIIII) were implicated as
sources of coagulopathy in MT with
stored whole blood (173, 174). Although
there was a strong correlation between
thrombocytopenia and coagulopathy,
multiple additional defects, including low
fibrinogen or factor deficiencies (II, V,
VII, VIII), were also felt to occur because
not all patients with thrombocytopenia
had bleeding, and not all patients with
bleeding had thrombocytopenia (104,
175–177). Studies of MT with stored
whole blood during the Vietnam conflict
also concluded that dilutional thrombo-
cytopenia was the major cause of micro-
vascular bleeding (103), although signif-
icant thrombocytopenia (platelet counts
�100 � 109/L) tended to develop later
than would be predicted (that is, after
18–20 units of stored whole blood) (154,
166, 178). In addition to thrombocytope-
nia, platelet aggregation defects were also
noted after MT with stored whole blood
(179). In the 1970s, there was a change in
practice from the use of stored whole
blood to “modified whole blood” (with
platelets and fibrinogen removed before
storage, but with 1:1 ratios of red cells to
plasma), which still resulted in thrombo-
cytopenia as the most common cause of
excessive bleeding in MT (180).

Since the advent of fractionated com-
ponent transfusion practices in the
1980s, dilutional coagulation factor defi-
ciencies have become more prominent
(105, 181–184). Fibrinogen depletion de-
velops earlier (at 1.4 blood volume re-
placement) than any other coagulation
factor deficiency (181, 185, 186). Addi-
tionally, the optimal concentration of
other coagulation factors to allow for en-
zyme-complex assembly is near the normal
concentration of factors in plasma (187).
Although platelets remain important (26,
188, 189), fresh-frozen plasma is currently
considered the first choice in treating co-
agulopathy associated with MT (168).

Lowered hematocrit and dilution of
RBCs may also contribute to coagulopa-
thy. In addition to biochemical interac-
tions with platelets and fibrin within the
thrombus, erythrocytes contribute to he-
mostasis by allowing margination of
platelets toward the capillary wall and
endothelium (190). Local platelet con-
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centrations along the endothelium are
nearly seven times higher than the aver-
age blood concentration as a result of this
effect (191). Anemia has been correlated
with increased bleeding times in both
nonthrombocytopenic and thrombocyto-
penic animal models (192). An acute drop
in the hematocrit will increase bleeding
times, which can be reversed with RBC
transfusion (193), an effect also noted in
thrombocytopenic patients with platelet
counts �100 � 109/L (194, 195). The
optimal hematocrit for platelet–vessel
wall interactions is unknown but may be
as high as 35% (169).

Dilutional coagulopathy may be inev-
itable in patients requiring a massive re-
suscitation as a result of the addition of
preservative solutions to stored blood
products after collection. Transfusion of
stored red blood cells, plasma, and plate-
lets in a 1:1:1 ratio results in a solution
with a hematocrit of 30%, coagulation
factor levels of approximately 60%, and
platelets of 80 � 109/L (166). It should be
noted that crystalloids and colloids (196)
intended to restore volume and limit
shock pathophysiology will greatly inten-
sify dilutional effects if given in sufficient
quantities (�20 mL/kg). In addition to
dilutional effects, colloids such as hy-
droxyethyl starch are also known to in-
crease coagulopathy by impairing von
Willebrand factor activity in plasma (197,
198). For these reasons, some have advo-
cated for limited use of crystalloids and
colloids in severe trauma or massive
hemorrhage (5).

Management of Massive
Transfusion

Recognition of changes in transfusion
practices over the decades is important
when designing strategies to prevent or
treat the complications of MT. Concepts
from the era of whole blood transfusion
may still be applicable, but as a conse-
quence of component therapy, these are
overlaid with the additional complexity
of plasma to red blood cell (fresh-frozen
plasma [FFP]:RBC) ratios. Blood prod-
ucts should be transfused recognizing
that coagulopathy can be present on
admission, develops early in patients
requiring MT, and may be exacerbated
by inappropriate transfusion strategies
(168, 169).

Plasma. With the shift away from
stored whole blood and “modified” whole
blood, it is easier to understand the in-
creasing focus on plasma for manage-

ment of coagulopathy. Whole blood con-
tains red cells and plasma in a 1:1 ratio,
and transfusion of plasma in appropriate
FFP:RBC ratios has been proposed as a
means to both prevent and treat the co-
agulopathy of trauma. The impact of
plasma has been shown in civilian trauma
settings. Cinat et al. found that survivors
received a FFP:RBC ratio of 1:1.8,
whereas nonsurvivors received a ratio of
1:2.5 (17). Emerging data from combat
casualties in Iraq also support the impact
of plasma, showing a 65% mortality for
patients in the lowest ratio group (1:8
FFP:RBC) as compared with a 19% mor-
tality in patients in the highest ratio
group (1:1.4) (199).

Empiric treatment with plasma has
been based on washout equations with
assumed stable blood volumes. It was rec-
ognized in the 1940s that if resuscitation
is performed using factor-poor solutions
(for example, stored red cells, crystalloid,
or colloid), then infusion of one blood
volume results in only 38% of the pa-
tient’s original blood remaining in circu-
lation. In a two-blood volume infusion,
only 13% remains (200). These values are
reflective of the plasma and clotting fac-
tors remaining in circulation. Such cal-
culations are appropriate in elective sur-
gery or exchange transfusion settings
where losses are replaced as they are oc-
curring, but may not be appropriate for
trauma settings where significant hemor-
rhage may have already occurred. Math-
ematical modeling taking into account
initial loss of half a blood volume reveals
that the original patient’s blood remain-
ing would be 16% and 3% after one and
two blood volumes transfused, respec-
tively (23). It is also common for severely
injured patients to receive multiple units
of red blood cells before coagulopathy is
recognized and plasma is requested.
Thawing of plasma takes time, and al-
though plasma is being prepared, pa-
tients often receive even more blood or
crystalloids, which will further exacer-
bate coagulopathy. Thus, it has been sug-
gested that plasma should be transfused
early in the resuscitation to prevent dilu-
tional coagulopathy (18, 27, 201). One
way to incorporate plasma early is for the
blood bank to provide “prethawed
plasma” on admission. Prethawed plasma
is FFP that has been thawed and then
refrigerated (for up to 5 days) thus mak-
ing it immediately available to patients
on admission to the trauma bay. “Pre-
thawed plasma” contains less of the labile
factors V and VIII than FFP but for most

purposes can be used interchangeably
with FFP in trauma patients (166). Be-
cause plasma must be ABO-compatible,
AB plasma (the universal plasma without
anti-A or anti-B antibodies and a scarce
resource given that only 5% of the pop-
ulation has this blood type) is often used
until the blood type of the patient is
known and type-specific plasma can be
issued.

The optimal FFP:RBC ratio is un-
known and randomized data are limited
(202). Mathematical pharmacokinetic
models for FFP transfusion have been
developed suggesting that a ratio of 2:3
(203) or a more aggressive ratio of 1:1
(204) FFP:RBC will help to prevent the
onset of dilutional coagulopathy. Resus-
citation of exsanguinating patients is a
challenging problem, which is worsened
when clear MT protocols have not been
developed (205). Although many institu-
tions have MT protocols in place, adher-
ence to such guidelines can still be diffi-
cult in a chaotic resuscitation. Successful
resuscitation requires strong collabora-
tion and effective communication among
providers in the emergency room, oper-
ating room, intensive care unit, and
blood bank (206).

Platelets. Although thrombocytopenia
has been considered a delayed complica-
tion of MT, the phenomena of platelet
dysfunction forces a reconsideration of
the “adequate” platelet count necessary
for hemostasis. Some have advocated that
as a result of platelet dysfunction, plate-
lets should be administered regardless of
circulating counts in patients with surgi-
cal bleeding (188, 207). The currently
recommended platelet transfusion
threshold is 50 � 109/L for active bleed-
ing or planned invasive procedures at risk
for noncompressible bleeding (208). Im-
proved survival, however, has been noted
in patients with platelets counts �100 �
109/L after surgery for ruptured aortic
aneurysm (209). Such observations, as
well as expert opinions, have led to rec-
ommendations for a higher target plate-
let transfusion threshold of 100 � 109/L
in cases of multiple high-energy trauma
or central nervous system injury (93, 181,
189, 210–213).

One randomized trial in 1986 com-
pared prophylactic pooled platelet trans-
fusion with FFP in 33 massively trans-
fused patients receiving modified whole
blood. This trial applied a pooled platelet:
RBC ratio of 0.5:1 and showed no differ-
ence in the development of microvascular
bleeding (214). Mathematical modeling
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has suggested that a higher pooled plate-
let:RBC ratio of 0.8:1 would be optimal
(203). Retrospective data supporting this
modeling include a study by Cosgriff et
al. of patients receiving MT with packed
RBCs showing that survivors received a
pooled platelet:RBC ratio of 0.79:1,
whereas nonsurvivors received a ratio of
0.48:1 (93). Very similar findings were
reported by Cinat et al. with apheresis
platelets in patients receiving over 50
units of blood in 48 hrs (17).

Cryoprecipitate/Fibrinogen. Fibrino-
gen is the factor most rapidly depleted
during MT through blood loss, consump-
tion, dilution, and increased degradation.
Cryoprecipitate is most commonly ad-
ministered in multiple pooled units, al-
though a single unit of cryoprecipitate
contains 0.25 g of fibrinogen as well as
von Willebrand-factor/VIII complex and
factor XIII. Although cryoprecipitate is
considered important for managing hy-
pofibrinogenemia, it should also be noted
that one unit of FFP contains approxi-
mately 0.5 g of fibrinogen (that is, equiv-
alent to two units of cryoprecipitate), al-
beit in a larger volume of fluid.
Transfusion of appropriate ratios of FFP
should adequately replace fibrinogen in
most cases of MT (201, 215). If massively
transfused patients are noted to have a
fibrinogen level less than 100 mg/dL de-
spite adequate FFP administration, ABO-
compatible cryoprecipitate or fibrinogen
is indicated (211, 212, 216).

Fresh Whole Blood. The use of fresh
whole blood (FWB) is addressed more
specifically in this supplement as well as
in other recent reviews (29, 217). Fresh
whole blood, defined specifically as blood
collected and stored at 22°C for no longer
than 24 hrs (218), is rarely used in civil-
ian practice (219). This definition is gen-
erally accepted; however, recent data sup-
port storage at 22°C for as long as 72 hrs
(220). The use of FWB in MT has been the
subject of intense debate in the literature.
Duke first recognized in 1910 that whole
blood could improve platelet counts and
control bleeding in thrombocytopenic pa-
tients (221). After the development of
fractionation, however, many in the civil-
ian blood-banking community felt that
FWB use was anachronistic and inappro-
priate for almost all transfusion indica-
tions given the wide availability of com-
ponents (222, 223). This was met with
equally strong opinions that FWB was
indicated to counter dilutional effects
(224, 225), to manage refractory micro-
vascular bleeding and thrombocytopenia

(154, 178, 226), or to conserve time and
limit donor exposure when multiple
blood products were necessary (227, 228).
Randomized studies in liver transplanta-
tion have suggested equivalence of FWB
to component therapy (229), whereas
randomized studies in cardiac surgery
have yielded conflicting results (230 –
232). Randomized data comparing FWB
with component therapy in trauma do
not yet exist. Currently, FWB remains an
important blood product as an alternative
source for platelets and/or plasma for
trauma, particularly in austere condi-
tions with limited resources.

Nonsurgical Hemostatic Agents

Topical Sealants. Topical hemostatic
sealants are used as adjuncts for local
hemostasis in cases in which conven-
tional measures of bleeding control fail.
Essentially, sealants allow local applica-
tion of concentrated clotting factors to
promote conversion of endogenous fi-
brinogen into fibrin. The use of fibrin in
the setting of trauma began in World War
II when it was applied topically during cra-
nial and spinal operations (233). Fibrin
glues and sealants derived from human or
bovine donors have been produced for
medical and surgical applications since the
1970s (234–238). Problems with the devel-
opment of autoantibodies against factor V
(239–241) and infectious disease transmis-
sion (242, 243) have been overcome
through improvements in production of
purified plasma-derived or recombinant
human thrombin and fibrinogen prepara-
tions (244).

FloSeal (Baxter, Deerfield, IL), a rela-
tively new U.S. Food and Drug Adminis-
tration (FDA)-approved topical agent, is a
combination of bovine gelatin granules
mixed with a human thrombin solution
immediately before topical use (245). Al-
though its hemostatic activity requires
the presence of fibrinogen, it does not
rely on platelets or other endogenous
clotting factors. It has proven effective as
an adjunct to standard hemorrhage con-
trol techniques in patients undergoing
cardiac, vascular, and spinal surgery
(246–248). Animal studies as well as case
reports of successful FloSeal use in
trauma have been published, although no
randomized studies have been performed
(249–251).

Granular Zeolite. Granular zeolite, a
microporous crystalline aluminosilicate
hemostatic agent, is FDA-approved for
hemostasis of external wounds. As a po-

rous mesh bag containing zeolite beads
designed to be applied directly to wounds,
it is marketed as QuikClot (Z-Medica,
Wallingford, CT) and works through ab-
sorption of water from blood, thus con-
centrating clotting factors and platelets
(252, 253). Most data regarding the effec-
tiveness of this agent in controlling hem-
orrhage come from animal models (254).
The use of granular zeolite is known to
result in an exothermic reaction. Signif-
icant thermal injuries have been observed
in animal models (255, 256), and a case
series has been published describing
burns after the application of granular
zeolite for the management of bleeding
trauma patients (257). The manufacturer
has modified the cation contained within
the crystalline structure of the compound
and is preloading the compound with wa-
ter to control and decrease this exother-
mic reaction (258). Another undesirable
aspect of this product is that removal of
the granules from wounds can be time-
consuming. As noted, the manufacturer
of QuikClot has introduced an improved
product that packages the zeolite within
beads contained in a mesh bag intended
to limit the potential for dispersal of the
granules within the wound (259). Efforts
are underway to improve training of pre-
hospital personnel in the use of this prod-
uct (260) because it is relatively light-
weight and can be transported into the
field for use in the prehospital setting.
Although no clinical trials have been per-
formed comparing it with other treat-
ments, granular zeolite has been used
successfully to control hemorrhage by
U.S. military personnel. QuikClot has
been included in the U.S. Marine Corps
first aid kit and has also been fielded on a
more limited basis by the U.S. Army dur-
ing combat operations in both Iraq and
Afghanistan (261, 262).

Advanced Bandages/Dressings. Gauze
dressings, direct pressure, and tourni-
quets are effective methods for control-
ling hemorrhage in the prehospital set-
ting but are frequently insufficient for
proximal vascular injuries. Fibrin-im-
pregnated bandages have been developed
to enhance hemorrhage control in the
prehospital setting. In animal models, fi-
brin-impregnated bandages have been
shown to reduce blood loss (263–267).
Fibrin sealant dressings have also been
shown to rapidly control arterial hemor-
rhage in swine and prevent rebleeding for
at least 7 days, indicating that such dress-
ings may even provide the basis for an
alternative to suture repair of vascular
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injuries (268). Two recently developed
hemostatic dressings, fibrin sealant
dressings (American Red Cross dressing
described previously) and chitosan dress-
ings (made from deacetylated chitin on a
nonabsorbable backing, which primarily
adheres to tissue), were compared with
standard gauze Army field dressings in a
swine model of exsanguinating arterial
hemorrhage. Standard gauze dressings
failed to achieve hemostasis, resulting in
100% mortality. Chitosan dressings
achieved initial hemostasis in approxi-
mately 70% of treated animals but failed
to maintain hemostatic integrity, result-
ing in the deaths of all animals. Fibrin
sealant dressings achieved initial hemo-
stasis in 100% of treated animals and
durable hemostasis (96-hr experiment
duration) in five of six animals. Addition-
ally, fewer fibrin dressings were required
to achieve hemostasis compared with chi-
tosan or gauze (269). The limitations of
fibrin-impregnated bandages are cost
($1,000/bandage), brittleness with diffi-
culty of application into complex wounds,
and lack of FDA approval for routine use
(although it is available to the U.S. mili-
tary under an investigational new drug
protocol). Research to augment the effec-
tiveness of fibrin bandages and reduce the
amount of fibrin necessary has met with
mixed success (270, 271).

Recombinant Factor VIIa. Recombi-
nant factor VIIa (rFVIIa) is currently
FDA-approved only for episodes of severe
hemorrhage or perioperative manage-
ment of bleeding in patients with congen-
ital factor VII deficiency and hemophilia
A or B with inhibitors. Within the past 7
yrs, there has been off-label use of rFVIIa
for the management of other bleeding
conditions marked by excessive hemor-
rhage or risk of hemorrhage. Random-
ized controlled trials (RCTs) in patients
without hemophilia or factor VII defi-
ciency have been conducted in various
surgical populations, including esopha-
geal varices, liver biopsy, partial hepatec-
tomy with and without cirrhosis, liver
transplantation, dental surgery, retropu-
bic prostatectomy, major pelvic–acetabu-
lar surgery, cardiac surgery, and burn
grafting (272–284). Despite the early an-
ecdotal success and enthusiasm of indi-
vidual clinicians, none of these RCTs has
shown a survival benefit for rFVIIa and
ten of these 13 RCTs show no benefit in
reducing transfusion requirements or
blood loss.

The first case report of rFVIIa use in
trauma was published in 1999 (285) and

was soon followed by a series of con-
trolled experimental animal studies using
swine models of liver trauma, which
showed prolongations in survival and de-
creased blood losses (286 –290). One
study in grade V liver injury in warm,
noncoagulopathic swine, however,
showed no benefit in blood loss from rF-
VIIa (291). These studies coincided with a
number of subsequent case reports and
case series of rFVIIa in trauma and un-
controlled hemorrhage (22, 292–313).
The majority of publications suggested
decreased blood loss and/or decreased
transfusion requirements for patients, al-
though some offered cautionary notes
and limitations of rFVIIa, especially in
acidosis, refractory coagulopathy, and hy-
pothermia at temperatures approaching
30°C (106, 314–317). The only random-
ized trial to date of rFVIIa in trauma was
published in 2005 (318). This study ran-
domized 301 patients sustaining both
blunt and penetrating injuries to placebo
or rFVIIa to be administered after the
eighth unit of blood. This trial showed a
reduction of 2.6 units of RBC transfu-
sions for the blunt trauma subgroup (p 	
.02) and a similar although nonsignifi-
cant trend in the penetrating injury sub-
group. The incidence of adult respiratory
distress syndrome was decreased for pa-
tients with blunt injury who received rF-
VIIa, although there were no differences
in survival or in the incidence of throm-
boembolic events and multiorgan failure.

The thromboembolic complications
associated with rFVIIa have received con-
siderable attention with one large case
series of rFVIIa use reporting a thrombo-
embolic complication rate as high as
9.4% (319). One indirect comparison of
adverse event reporting for rFVIIa and
factor VII inhibitor bypass activity (an
agent accepted to cause thromboembolic
events) noted that rFVIIa had a higher
estimated incidence of serious thrombo-
embolic events than factor VII inhibitor
bypass activity (320). A subsequent pub-
lication on the results of adverse event
reporting also suggested that patients re-
ceiving rFVIIa are at risk of developing
serious venous and arterial complications
(321). It should be noted that neither of
these reports took into account the rate
of adverse events in equivalent control
groups of patients who did not receive
these agents. By contrast, a meta-analysis
of RCTs published in 2006 suggested no
overall increase in adverse events (322).

In light of the numerous data sets
available and concern over the potential

for adverse events, consensus statements
have been developed to guide the use of
rFVIIa in massive bleeding (323–325).
The use of rFVIIa in blunt trauma has
been supported with RCT data, although
its use in uncontrolled bleeding in surgi-
cal patients has only been supported by
case series. Adequately powered/random-
ized data do not exist to support the stan-
dard use of rFVIIa for penetrating
trauma. In summary, the off-label use of
rFVIIa is still considered controversial
and should be used with caution and
sound clinical judgment. An ongoing
clinical trial sponsored by NovoNordisk
on the use of rFVIIa in trauma may help
to clarify its risks and benefits in this
setting (326).

Antifibrinolytics. Because hyperfibrin-
olysis is a contributor to the coagulopa-
thy of trauma, antifibrinolytics have the
potential to reduce blood loss and improve
outcomes in traumatic bleeding. Antifi-
brinolytic agents have been shown to re-
duce blood loss in patients with both nor-
mal and exaggerated fibrinolytic responses
to surgery (327). The most extensively eval-
uated agents are aprotinin, epsilon amin-
ocaproic acid, and tranexamic acid.

Aprotinin is a nonspecific serine pro-
tease derived from bovine lung and por-
cine gut. It was initially approved by the
FDA for prophylactic use in patients un-
dergoing on-pump coronary artery by-
pass grafting who are at high risk for
perioperative blood loss (328), although
the FDA suspended marketing of aproti-
nin in November 2007 as a result of re-
ports of increased mortality in coronary
bypass surgery (329). Its primary hemo-
static activity results from the formation
of a reversible enzyme-inhibitor complex
with plasmin, thus inhibiting fibrinolysis.
There are limited clinical trial data eval-
uating aprotinin in trauma patients. The
Cochrane Collaboration performed a sys-
tematic review of antifibrinolytic drugs in
trauma and only one study of 819 was
suitable for analysis (330). In this study,
70 patients with pelvic or lower limb frac-
tures and hypovolemic shock were ran-
domized to aprotinin or placebo (331).
Although the volume of blood transfused
was decreased by 60% (relative risk [RR],

0.40; 95% confidence interval [CI],

0.91–0.11), differences in other out-
comes were not apparent and the authors
of the review concluded that there is no
evidence to support the routine use of
aprotinin in acute traumatic injury.

The lysine antifibrinolytics, aminoca-
proic acid and tranexamic acid, inhibit
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plasmin binding to fibrin by occupying
the lysine-binding sites of the proenzyme
plasminogen. Aminocaproic acid is ap-
proved by the FDA for enhancing hemo-
stasis in states of hyperfibrinolysis, and
tranexamic acid is approved for patients
with hemophilia undergoing tooth ex-
traction (332, 333). In a Cochrane Review
of antifibrinolytics for minimizing peri-
operative blood loss, tranexamic acid re-
duced the need for transfusion compared
with control by approximately one third
(RR, 0.61; 95% CI, 0.54–0.69) with sim-
ilar although less pronounced benefit
seen for aminocaproic acid (RR, 0.75;
95% CI, 0.58–0.96) (334). The Cochrane
Review of antifibrinolytic drugs in acute
traumatic injury revealed no studies of
sufficient quality to assess the benefits in
this population (330).

In summary, there is no evidence to
support the prophylactic or empiric use
of antifibrinolytic drugs to reduce alloge-
neic blood transfusion in patients sus-
taining acute traumatic injury (335).
There is currently a major ongoing inter-
national trial, CRASH-2: Clinical Ran-
domization of an Antifibrinolytic in Sig-
nificant Hemorrhage (NCT00375258), to
evaluate the use of tranexamic acid com-
pared with placebo in trauma patients.
Until these results are available, there
remains no established role for the pro-
phylactic or empiric use of antifibrinolyt-
ics in acute trauma.

Desmopressin.Desmopressin (DDAVP)
is a synthetic analog of arginine vasopres-
sin-1-deamino-8-d-arginine vasopressin
and is FDA-approved for the management
of mild hemophilia A and von Wille-
brand’s disease, type 1. DDAVP improves
primary hemostasis through stimulation
of the release of ultralarge von Wille-
brand factor multimers from endothelial
cells, leading to an increase in plasma
von Willebrand factor. DDAVP also in-
creases the density of glycoprotein recep-
tors on platelet surfaces and increases
plasma factor VIII (336–338). DDAVP has
been proven to be effective in reducing
bleeding in the setting of uremia (339)
and mild coagulopathy induced by hy-
droxyethyl starch (340). It has also been
suggested that DDAVP may be effective in
reducing hemorrhage after coronary ar-
tery bypass grafting in patients receiving
aspirin before surgery (341, 342), but the
results from more recent published stud-
ies on this benefit have been inconclusive
(343). A Cochrane Review of DDAVP in
reducing perioperative blood transfusions
showed no benefit compared with con-

trols (RR, 0.98; 95% CI, 0.88–1.10) (344).
There are no studies in trauma patients
using DDAVP, although its mode of ac-
tion and limited benefits in other surgical
populations make it unlikely to be as ef-
fective as a sole hemostatic agent in the
trauma population.

CONCLUSIONS

The optimal management of massive
transfusion and coagulopathy in trauma
patients is complex and depends heavily
on clinical judgment. This judgment, in
turn, must be derived from a broad un-
derstanding of the expected complica-
tions as well as an individualized ap-
proach to the multitude of presentations
and injuries of the specific patient. Cur-
rently, the challenges of performing stud-
ies in uncontrolled emergency settings
present many obstacles and remain
heavily influenced by the availability and
nature of transfusion support. However,
the continued high mortality rates asso-
ciated with massive transfusion make on-
going research an indisputable necessity.
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